VERTEX-TO-EDGE MONOPHONIC DISTANCE IN GRAPHS

I. Keerthi Asir and S. Athisayanathan

Research Department of Mathematics
St. Xavier's College (Autonomous), Palayamkottai - 627002 Tamilnadu, India.
e-mail : asirsxc@gmail.com, athisxc@gmail.com
Abstract
Let u be a vertex and e an edge in a connected graph G. A vertex-to-edge $u-e$ path P is a $u-v$ path, where v is a vertex in e such that P contains no vertices of e other than v and the $u-e$ path P is said to be $u-e$ monophonic path if P contains no chords in G. The vertex-to-edge monophonic distance $d_{m}(u, e)$ is the length of a longest $u-e$ monophonic path in G. A $u-e$ monophonic path of length $d_{m}(u, e)$ is called a vertex-to-edge $u-e$ monophonic. The vertex-to-edge monophonic eccentricity $e_{m_{1}}(u)$ of a vertex u in G is the maximum vertex-to-edge monophonic distance from u to an edge $e \in E$ in G. The vertex-to-edge monophonic radius $R_{m_{1}}$ of G is the minimum vertex-to-edge monophonic eccentricity among the vertices of G, while the vertex-to-edge monophonic diameter $D_{m_{1}}$ of G is the maximum vertex-to-edge monophonic eccentricity among the vertices of G. It is shown that $R_{m_{1}} \leq D_{m_{1}}$ for every connected graph G and that every two positive integers a and b with $2 \leq a \leq b$ are realizable as the vertex-to-edge monophonic radius and the vertex-to-edge monophonic diameter, respectively, of some connected graph. The vertex-toedge monophonic center $C_{m_{1}}(G)$ is the subgraph induced by the set of all vertices having minimum vertex-to-edge monophonic eccentricity and the vertex-to-edge monophonic periphery $P_{m_{1}}(G)$ is the subgraph induced by
the set of all vertices having maximum vertex-to-edge monophonic eccentricity. It is shown that the vertex-to-edge monophonic center of every connected graph G lies in a single block of G.

Keywords: vertex-to-edge distance, vertex-to-edge detour distance, vertex-to-edge monophonic distance.
Mathematics Subject Classification 2010: 05C12.

1 Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected simple graph. For basic graph theoretic terminologies, we refer to Chartrand and Zhang [2]. If $X \subseteq V$, then $\langle X\rangle$ is the subgraph induced by X. A Chord of a path $u_{1}, u_{2}, \ldots, u_{n}$ in G is an edge $u_{i} u_{j}$ with $j \geq i+2$. For example if one is locating an emergency facility like police station, fire station, hospital, school, college, library, ambulance depot, emergency care center, etc., then the primary aim is to minimize the distance between the facility and the location of a possible emergency. In 1964 Hakimi [3] considered the facility location problems as vertex-to-vertex distance in graphs. For any two vertices u and v in a connected graph G_{y} the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. For a vertex v in G, the eccentricity $e(v)$ of v is the distance between v and a vertex farthest from v in G. The minimum eccentricity among the vertices of G is its radius and the maximum eccentricity is its diameter, denoted by $\operatorname{rad}(G)$ and diam(G) respectively. A vertex v in G is a central vertex if $e(v)=\operatorname{rad}(G)$ and the subgraph induced by the central vertices of G is the center $\operatorname{Cen}(G)$ of G. A vertex v in G is a peripheral vertex if $e(v)=\operatorname{diam}(G)$ and the subgraph induced by the peripheral vertices of G is the periphery $\operatorname{Per}(G)$ of G. If every vertex of a graph G is a central vertex then G is called self-centered.

For example if one is making an election canvass or circular bus service the distance from the location is to be maximized. In 2005, Chartrand et. al. [1] introduced and studied the concepts of detour distance in graphs. For any two vertices u and v in a connected graph G_{x} the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. For a vertex v in G_{y} the detour eccentricity $e_{D}(v)$ of v is the detour distance between v and a vertex farthest from v in G. The minimum detour eccentricity among the vertices of G is its detour radius and the maximum detour eccentricity is its detour diameter, denoted by $\operatorname{rad}_{D}(G)$ and $\operatorname{diam}_{D}(G)$ respectively. The detour center, the detour self-centered and the detour periphery of a graph are defined similar to the center and periphery of a graph respectively.

For example if one is want to design the security based communication network, the monophonic concepts plays a vital role. These concepts have intresting applications in channel assignment problem in radio technologies. In 2011, Santhakumaran and Titus [7] introduced and studied the concepts of monophonic distance in graphs. For any two vertices u and v in G_{x} a $u-v$ path P is a $u-v$ monophonic path if P contains no chords. The monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of a longest $u-v$ monophonic path in G. For a vertex v in G_{x} the monophonic eccentricity $e_{m}(v)$ of v is the monophonic distance between v and a vertex farthest from v in G. The minimum monophonic eccentricity among the vertices of G is its monophonic radius and the maximum monophonic eccentricity is its monophonic diameter, denoted by $\operatorname{rad}_{m}(G)$ and $\operatorname{diam}_{m}(G)$ respectively. The monophonic center, the monophonic selfcentered and the monophonic periphery of a graph are defined similar to the center and periphery respectively of a graph.

For example when a railway line, pipe line or highway is constructed, the distance between the respective structure and each of the communities to be served is to be minimized. In a social network an edge represents two individuals having a common interest. Thus the vertex-to-edge distance have interesting application in social networks. In 2010, Santhakumaran [6] introduced the facility locational problem as vertex-to-edge distance in graphs as follows: For a vertex u and an edge e in a connected graph G , the vertex-to-edge distance is defined by $d(u, e)=\min \{d(u, v): v \in e\}$. The vertex-to-edge eccentricity $e_{1}(u)$ of u is defined by $e_{1}(u)=\max \{d(u, e): e \in E\}$. An edge e of G such that $e_{1}(u)=d(u, e)$ is called a vertex-to-edge eccentric edge of u. The vertex-to-edge radius r_{1} of G is defined by $r_{1}=\min \left\{e_{1}(v): v \in V\right\}$ and the vertex-to-edge diameter d_{1} of G is defined by $d_{1}=\max \left\{e_{1}(v): v \in V\right\}$. A vertex v for which $e_{1}(v)$ is minimum is called a vertex-to-edge central vertex of G and the set of all vertex-to-edge central vertices of G is the vertex-to-edge center $C_{1}(G)$ of G. A vertex v for which $e_{1}(v)$ is maximum is called a vertex-to-edge peripheral vertex of G and the set of all vertex-toedge peripheral vertices of G is the vertex-to-edge periphery $P_{1}(G)$ of G. If every vertex of G is a vertex-to-edge central vertex then G is called vertex-toedge self-centered graph.

Also when a dam, river or channel is constructed, the distance between the respective structure and each of the communities to be served is to be maximized. Keerthi Asir and Athisayanathan [4] introduced and studied the concepts of vertexto-edge detour distance in graphs as follows: For a vertex u and an edge e in a connected graph G_{x} a vertex-to-edge $u-e$ path P is a $u-v$ path, where v is a vertex in e such that P contains no vertices of e other than v and the vertex-to-edge detour distance $D(u, e)$ is the length of a longest $u-e$ path. A $u-e$ path of length
$D(u, e)$ is called a vertex-to-edge $u-e$ detour and for our convenience a $u-e$ path of length $d(u, e)$ is called a vertex-to-edge $u-e$ geodesic or simply $u-e$ geodesic. The vertex-to-edge detour eccentricity, $e_{D_{1}}(u)$ of a vertex u in G is defined as $e_{D_{1}}(u)=\max \{D(u, e): e \in E\}$. An edge e for which $e_{D_{1}}(u)=D(u, e)$ is called a vertex-to-edge detour eccentric edge of u. The vertex-to-edge detour radius of G is defined by $R_{1}=\operatorname{rad}_{D_{1}}(G)=\min \left\{e_{D_{1}}(v): v \in V\right\}$ and the vertex-to-edge detour diameter of G is defined by $D_{1}=\operatorname{diam}_{D_{1}}(G)=\max \left\{e_{D_{1}}(v): v \in V\right\}$. A vertex v in G is called a vertex-to-edge detour central vertex if $e_{D_{1}}(v)=R_{1}$ and the vertex-to-edge detour center of G is defined by $C_{D_{1}}(G)=\operatorname{Cen}_{D_{1}}(G)=\left\langle\left\{v \in V: e_{D_{1}}(v)=R_{1}\right\}\right\rangle$. A vertex v in G is called a vertex-to-edge detour peripheral vertex if $e_{D_{1}}(v)=D_{1}$ and the vertex-to-edge detour periphery of G is defined by $P_{D_{1}}(G)=\operatorname{Per}_{D_{1}}(G)=\left\langle\left\{v \in V: e_{D_{1}}(v)=D_{1}\right\}\right\rangle$. If every vertex of G is a vertex-to-edge detour central vertex then G is called vertex-to-edge detour self-centered graph.

These motivated us to introduce a distance called the vertex-to-edge monophonic distance in graphs and investigate certain results related to vertex-to-edge monophonic distance and other distances in graphs. These ideas have interesting applications in channel assignment problem in radio technologies and capture different aspects of certain molecular problems in theoretical chemistry. Also there are useful applications of these concepts to security based communication network design. Throughout this paper, G denotes a connected graph with atleast two vertices.

2. Vertex-To-Edge Monophonic Distance

Definition 2.1. Let u be a vertex and e an edge in a connected graph G. A vertex-to-edge $u-e$ path P is said to be a vertex-to-edge $u-e$ monophonic path if P contains no chords. The vertex-to-edge monophonic distance, $d_{m}\left(u_{s} e\right)$ is the length of a longest $u-e$ monophonic path in G. A $u-e$ monophonic path of length $d_{m}\left(u_{s} e\right)$ is called a vertex-to-edge $u-e$ monophonic or simply $u-e^{\text {monophonic. }}$

Example 2.2. Consider the graph G given in Fig 2.1. For the vertex u and the edge $e=\{v, w\}$, the paths $P_{1}: u, w ; P_{2}: u, z_{3} T_{s} v$ are $u-e$ monophonic paths, while the paths $Q_{1}: u_{s}, w_{s}, v_{;} Q_{2}: u_{s} z_{s} r_{s}, v_{s}, w_{;} Q_{3}: u, t_{s} s_{s} x_{s} z_{,} r_{s} v$ and $Q_{4}: u_{s} t_{s} s_{s} x_{s} y_{s} z_{s} r_{s} v$ are not $u-e$ monophonic paths. Now the vertex-to-edge distance $d(u, e)=1_{u}$ the vertex-to-edge detour distance $D(u, e)=7$ and the vertex-to-edge monophonic distance $d_{m}(u, e)=3$. Thus the vertex-to-edge monophonic distance is different from both the vertex-to-edge distance and the vertex-to-edge detour distance. Also P_{1} is a $u-e$ geodesic, P_{3} is a $u-e$ detour and P_{2} is a u - e monophonic. Note that the $v-e$ and $w-e$ monophonic paths are trivial.

Fig. 2.1: G

Keerthi Asir and Athisayanathan [4] showed that for a vertex u and an edge e in a graph G of order $n, 0 \leq d(u, e) \leq D(u, e) \leq n-2$. Now we have the following theorem.

Theorem 2.3. For a vertex u and an edge e in a non-trivial connected graph G of order $n_{,} 0 \leq d(u, e) \leq d_{m}(u, e) \leq D(u, e) \leq n-2$. Proof. It is enough to show that $d(u, e) \leq d_{m}(u, e)$ and $d_{m}(u, e) \leq D(u, e)$. By definition $d(u, e) \leq d_{m}(u, e)$. If P is a unique $\mathrm{u}-\mathrm{e}$ path in G , then $d(u, e)=d m(u, e)=D(u, e)$. Suppose that G contains more than one path. Let Q be a longest $u-e$ path in G.
Case 1. If Q contains no chords in G_{x} then $d_{m}(u, e)=D(u, e)$.
Case 2. If Q contains a chord in G_{s} then $d m(u, e)<D(u, e)$.

Remark 2.4. The bounds in the Theorem 2.3 are sharp. If G is a complete graph of order 2, then $d(u, e)=d_{m}(u, e)=D(u, e)=0=n-2$ for every vertex u in G and if G is a path $P: u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}$ of order n, then $d(u, e)=d_{m}(u, e)=D(u, e)=n-2$, where $u=u_{1}$ and $e=\left\{u_{n-1}, u_{n}\right\}$. Also we note that if G is a tree, then $d(u, e)=d_{m}(u, e)=D(u, e)$ for every vertex u and edge e in G and the graph G given in Fig. 2.1, $0<d(u, e)<d_{m}(u, e)<D(u, e)<n-2$, where $e=\{v, w\}$.

Since a vertex of degree $n-1$ in a graph G of order $n_{,}$belongs to every edge e in G_{x} we have the following theorem.

Theorem 2.5. Let G be a connected graph of order n and e an edge in G. If u is a vertex of degree $n-1$, then $d_{m}(u, e)=0$.

The converse of the Theorem 2.5 is not true. For the graph G given in Fig. 2.1, $d_{m}(u, e)=0$, where $e=\{u, w\}$, but $\operatorname{deg}(u) \neq n-1$.

Since the maximum length of a $u-e$ monophonic path between a vertex u and an edge e in $K_{n, m}$ is 2, we have the following theorem.

Theorem 2.6. Let $K_{n, m}(n<m)$ be a complete bipartite graph with the partition V_{1}, V_{2} of $V\left(K_{n, m}\right)$ such that $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$. Let u be a vertex and e an edge such that $u \notin e$ in $K_{n, m p}$ then $d_{m}(u, e)=2$

Since every tree has unique $u-e$ monophonic path between a vertex u and an edge e_{s} we have the following theorem.

Theorem 2.7. If G is a tree, then $d(u, e)=d_{m}(u, e)=D(u, e)$ for every vertex u and an edge e in G.

The converse of the Theorem 2.7 is not true. For every vertex u in K_{3} with $u \notin e, d(u, e)=d_{m}(u, e)=D(u, e)=1$ and for every vertex u in K_{3} with $u \in e_{,} d(u, e)=d_{m}(u, e)=D(u, e)=0$.

3 Vertex-to-Edge Monophonic Center

Definition 3.1. Let G be a connected graph. The vertex-to-edge monophonic eccentricity $e_{m_{1}}(u)$ of a vertex u in G is defined as $e_{m_{1}}(u)=\max \left\{d_{m}(u, e): e \in E\right\}$. An edge $e^{\text {for }}$ which $e_{m_{1}}(u)=d_{m}\left(u_{,} e\right)$ is called a vertex-to-edge monophonic eccentric edge of u. The vertex-to-edge monophonic radius of G is defined as,
$R_{m_{1}}=\operatorname{rad}_{m_{1}}(G)=\min \left\{e_{m_{1}}(v): v \in V\right\}$ and the vertex-to-edge monophonic diameter of G is defined as, $D_{m_{1}}=\operatorname{diam}_{m_{1}}(G)=\max \left\{e_{m_{1}}(v): v \in V\right\}$. A vertex v in G is called a vertex-to-edge monophonic central vertex if $e_{m_{1}}(v)=R_{m_{1}}$ and the vertex-to-edge monophonic center of G is defined as $C_{m_{1}}(G)=\operatorname{Cen}_{m_{1}}(G)=\left\langle\left\{v \in V: e_{m_{1}}(v)=R_{m_{1}}\right\}\right\rangle$. A vertex v in G is called a vertex-to-edge monophonic peripheral vertex if $e_{m_{1}}(v)=D_{m_{1}}$ and the vertex-to-edge monophonic periphery of G is defined as, $P_{m_{1}}(G)=\operatorname{Per}_{m_{1}}(G)=\left\langle\left\{v \in V: e_{m_{1}}(v)=D_{m_{1}}\right\}\right\rangle$. If every vertex of G is a vertex-to-edge monophonic central vertex, then G is called a vertex-toedge monophonic self centered graph.

Example 3.2. For the connected graph G given in Fig. 3.1, the set of all edges in G are given by,

$$
\begin{aligned}
& E=\left\{e_{1}=\left\{v_{1}, v_{2}\right\}, e_{2}=\left\{v_{1}, v_{3}\right\}, e_{3}=\left\{v_{2}, v_{3}\right\}, e_{4}=\left\{v_{3}, v_{4}\right\},\right. \\
& e_{5}=\left\{v_{4}, v_{5}\right\}, e_{6}\left\{v_{5}, v_{6}\right\}, e_{7}=\left\{v_{6}, v_{7}\right\}, e_{8}=\left\{v_{4}, v_{7}\right\}, e_{9}= \\
& \left\{v_{7}, v_{8}\right\}, e_{10}=\left\{v_{8}, v_{10}\right\}, e_{11}=\left\{v_{4}, v_{10}\right\}, e_{12}=\left\{v_{4}, v_{9}\right\}, e_{13}= \\
& \left\{v_{9}, v_{10}\right\}, e_{14}=\left\{v_{10}, v_{14}\right\}, e_{15}=\left\{v_{13}, v_{14}\right\}, e_{16}=\left\{v_{12}, v_{13}\right\}, \\
& e_{17}=\left\{v_{11}, v_{12}\right\}, e_{18}=\left\{v_{10}, v_{11}\right\}, e_{19}=\left\{v_{11}, v_{14}\right\}, e_{20}= \\
& \left.\left\{v_{10}, v_{11}\right\}, e_{21}=\left\{v_{10}, v_{13}\right\}, e_{22}=\left\{v_{10}, v_{12}\right\}, e_{23}=\left\{v_{12}, v_{14}\right\}\right\}
\end{aligned}
$$

Fig. 3.1: G

The vertex-to-edge eccentricity $e_{1}(v)$ the vertex-to-edge detour eccentricity $e_{D_{1}}(v)$ and the vertex-to-edge monophonic eccentricity $e_{m_{1}}(v)$ of all the vertices of G are given in Table 1.

v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}
$e_{1}(v)$	4	4	3	2	3	4	3	3	3	3	4	4	4	4
$e_{D_{1}}(v)$	11	11	9	8	8	8	8	9	9	7	11	11	11	11
$e_{m_{1}}(v)$	4	4	3	2	5	4	3	4	5	4	5	5	5	5

Table 1

The vertex-to-edge monophonic eccentric edge of all the vertices of G are given in Table 2.

Vertex v	Vertex-to-Edge Monophonic Eccentric Edge e
v_{1}, v_{2}, v_{3}	$e_{6}, e_{7}, e_{9}, e_{10}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}, e_{23}$
v_{4}	$e_{9}, e_{10}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}, e_{23}$
v_{5}	$e_{15}, e_{16}, e_{17}, e_{18}, e_{19}, e_{23}$
v_{6}, v_{7}	$e_{1}, e_{15}, e_{16}, e_{17}, e_{18}, e_{19}, e_{23}$
v_{8}	e_{1}
$v_{9}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}$	e_{5}

Table 2

The vertex-to-edge radius $r_{1}=2$, the vertex-to-edge diameter $d_{1}=4$, the vertex-to-edge detour radius $R_{1}=7$, the vertex-to-edge detour diameter $D_{1}=11$, the vertex-to-edge monophonic radius $R_{m_{1}}=2$ and the vertex-to-edge monophonic diameter $D_{m_{1}}=5$. Also the vertex-to-edge center $C_{1}(G)=\left\langle\left\{v_{4}\right\}\right\rangle$, the vertex-to-edge periphery $P_{1}(G)=\left\langle\left\{v_{1}, v_{2}, v_{6}, v_{11}, v_{12}, v_{13}, v_{14}\right\}\right\rangle$, the vertex-to-edge detour center $C_{D_{1}}(G)=\langle\{v 10\}\rangle$, the vertex-to-edge detour periphery $P_{D_{1}}(G)=\left\langle\left\{v_{1}, v_{2}, v_{11}, v_{12}, v_{13}, v_{14}\right\}\right\rangle$, the vertex-to-edge monophonic center $C_{m_{1}}(G)=\left\langle\left\{v_{4}\right\}\right\rangle$ and the vertex-to-edge monophonic periphery $P_{m_{1}}(G)=\left\{v_{5}, v_{9}, v_{11}, v_{12}, v_{13}, v_{14}\right\}$.

The vertex-to-edge monophonic radius $R_{m_{1}}$ and the vertex-to-edge monophonic diameter $D_{m_{1}}$ of some standard graphs are given in Table 3.

G	K_{n}	P_{n}	$C_{n}(n \geq 4)$	$W_{n}(n \geq 5)$	$K_{n, m}(m \geq n)$
$R_{m_{1}}$	1	$\left[\frac{n-2}{2}\right\rfloor$	$n-2$	1	2
$D_{m_{1}}$	1	$n-2$	$n-2$	$n-3$	2

Table 3

Remark 3.3. In a connected graph $G_{y} C_{1}(G), C_{D_{1}}(G), C_{m_{1}}(G)$ and $P_{1}(G), P_{D_{1}}(G), P_{m_{1}}(G)$ need not be same. For the graph G given in Fig 3.2,
it is shown that $C_{1}(G)=\left\langle\left\{v_{4}, v_{9}\right\}\right\rangle, C_{D_{1}}(G)=\left\langle\left\{v_{10}\right\}\right\rangle$ and $C_{m_{1}}(G)=\left\langle\left\{v_{6}\right\}\right\rangle$ are distinct. Also the graph G given in Fig 3.1, it is shown that

$$
\begin{aligned}
& P_{1}(G)=\left\langle\left\{v_{1}, v_{2}, v_{6}, v_{11}, v_{12}, v_{13}, v_{14}\right\}\right\rangle, \\
& P_{D_{1}}(G)=\left\langle\left\{v_{1}, v_{2}, v_{11}, v_{12}, v_{13}, v_{14}\right\}\right\rangle \\
& P_{m_{1}}(G)=\left\{v_{5}, v_{9}, v_{11}, v_{12}, v_{13}, v_{14}\right\}
\end{aligned}
$$

are distinct.

Fig. 3.2: G
Remark 3.4. In a connected graph $G_{x} C_{m_{1}}(G)$ and $P_{m_{1}}(G)$ need not be connected. For the graph G given in Fig 3.3, $C_{m_{1}}(G)=\left\langle\left\{v_{2}, v_{4}\right\}\right\rangle$ and $P_{m_{1}}(G)=\left\langle\left\{v_{1}, v_{3}, v_{5}\right\}\right\rangle$ are disconnected.

Fig. 3.3: G

Example 3.5. The complete graph K_{n}, the cycle C_{n} and the complete bipartite graph $K_{n, m}$ are vertex-to-edge monophonic self centered graphs.

Remark 3.6. A self-centered graph need not be a vertex-to-edge monophonic self centered graph. For the graph G given in Fig 3.4, $C(G)=\langle V(G)\rangle$ and $C_{m_{1}}(G)=\left\langle\left\{v_{2}, v_{4}, v_{7}\right\}\right\rangle$.

Fig. 3.4: G

Remark 3.7. A vertex-to-edge self-centered graph need not be a vertex-toedge monophonic self centered graph. For the graph G given in Fig 3.5, $C_{1}(G)=\langle V(G)\rangle$ and $C_{m_{1}}(G)=\left\langle\left\{v_{2}, v_{6}, v_{8}\right\}\right\rangle$.

Fig. 3.5: G
Remark 3.8. A detour self-centered graph need not be a vertex-to-edge monophonic self centered graph. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5), \quad C_{D}(W n)=\left\langle V\left(W_{n}\right)\right) \quad$ and $C_{m_{1}}(W n)=\langle V(K 1)\rangle$.

Remark 3.9. A vertex-to-edge detour self-centered graph need not be a vertex-to-edge monophonic self centered graph. For the graph G given in Fig 3.6, $C_{D_{1}}(G)=\langle V(G)\rangle$ and $C_{m_{1}}(G)=\left\langle\left\{v_{1}, v_{3}\right\}\right\rangle$.

Fig. 3.6: G

Observation 3.10. No cut vertex in a connected graph G is a vertex-to-edge monophonic peripheral vertex of G.

Remark 3.11. If G is a vertex-to-edge monophonic self-centered graph, then G is its own vertex-to-edge monophonic periphery.

Theorem 3.12. Let G be a connected graph of order n. Then
(i) $0 \leq e_{1}(v) \leq e_{m_{1}}(v) \leq e_{D_{1}}(v) \leq n-2$ for any vertex v in G.
(ii) $0 \leq r_{1} \leq R_{m_{1}} \leq R_{1} \leq n-2$.
(iii) $0 \leq d_{1} \leq D_{m_{1}} \leq D_{1} \leq n-2$.

Proof. This follows from Theorem 2.3.

Remark 3.13. The bounds in the Theorem 3.12(i) are sharp. If G is a complete graph of order n, then $e_{1}(u)=e_{m_{1}}(u)=e_{D_{1}}(u)=0$ for every vertex u in G and if G is a path $P: u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}$ of order n, then $e_{1}(u)=e_{m_{1}}(u)=e_{D_{1}}(u)=n-2$, where $u=u_{1}$ or $u=u_{n}$. Also we note that if G is a tree, then $e_{1}(u)=e_{m_{1}}(u)=e_{D_{1}}(u)$ for every vertex u in G and for the graph G given in Fig. 2.1, $e_{1}(u)<e_{m_{1}}(u)<e_{D_{1}}(u)$.

In $[1,2]$ it is shown that for every non-trivial connected graph G, the radius and diameter are related by $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$, the detour radius and detour diamater are related by $\operatorname{rad}_{D}(G) \leq \operatorname{diam}_{D}(G) \leq 2 \operatorname{rad}_{D}(G)$ and Keerthi Asir et. al. [4] showed that the vertex-to-edge detour radius and vertex-to-edge detour diameter are related by $R_{1} \leq D_{1} \leq 2 R_{1}+1$. The following example shows that the upper inequality does not hold for the vertex-to-edge monophonic distance also.

Example 3.14. For the wheel

$$
W_{n}(n \geq 5), D_{m_{1}}>2 R_{m_{1}} \text { and } D_{m_{1}}>2 R_{m_{1}}+1
$$

Ostrand [5] showed that for each pair $a_{s} b$ of positive integers with $a \leq b \leq 2 a$ are realizable as the radius and diameter respectively of some connected graph, Chartrand et. al. [1] showed that for each pair a, b of positive integers with $a \leq b \leq 2 a$ are realizable as the detour radius and detour diameter respectively of some connected graph and Keerthi Asir et. al. [4] showed that every two positive positive integers a and b with $a \leq b \leq 2 a+1$ are realizable as the vertex-to-edge detour radius and vertex-to-edge detour diameter respectively of some connected graph. Now, we have the following realization theorem for the vertex-to-edge monophonic radius and vertex-to-edge monophonic diameter of some connected graph.

Theorem 3.15. For each pair a, b of positive integers with $2 \leq a \leq b$, there exists a connected graph G with $R_{m_{1}}=a$ and $D_{m_{1}}=b$.
Proof. Case 1. $a=b$. Let $G=C_{a+2}: u_{1}, u_{2}, \ldots, u_{a+2}, u_{1}$ be a cycle of order $a+2$. Then $e_{m_{1}}\left(u_{i}\right)=a$ for $1 \leq i \leq a+2$. It is easy to verify
that every vertex x in G with $e_{m_{1}}(x)=a$. Thus $R_{m_{1}}=a$ and $D_{m_{1}}=b$ as $a=b$.

Case 2. $2 \leq a<b \leq 2 a$. Let $C_{a+2}: u_{1}, u_{2}, \ldots, u_{a+2}, u_{1}$ be a cycle of order $a+2$ and $P_{b-a+1}: v_{1}, v_{2}, \ldots, v_{b-a+1}$ be a path of order $b-a+1$. We construct the graph G of order $b+2$ by identifying the vertex u_{1} of C_{a+2} with v_{1} of P_{b-a+1} as shown in the Fig 3.7. It is easy to verify that

$$
\begin{aligned}
& e_{m_{1}}\left(u_{i}\right)=a \text { for } i=1,2, a+2 \\
& e_{m_{1}}\left(u_{i}\right)= \begin{cases}b-i+2, & \text { if } 3 \leq i \leq\left\lceil\frac{a+2}{2}\right\rceil \\
b-a+i-2, & \text { if }\left\lceil\frac{a+2}{2}\right\rceil<i \leq a+1\end{cases} \\
& e_{m_{1}}\left(v_{i}\right)=a+i-1 \text { for } 1 \leq i \leq b-a+1
\end{aligned}
$$

In particular

$$
\begin{aligned}
e_{m_{1}}\left(u_{i}\right) & =b \text { for } i=3, a+1 \\
e_{m_{1}}\left(v_{i}\right) & =b \text { for } i=b-a+1
\end{aligned}
$$

It is easy to verify that there is no vertex x in G with $e_{m_{1}}(x)<a$ and there is no vertex y in G with $e_{m_{1}}(y)>b$. Thus $R_{m_{1}}=a$ and $D_{m_{1}}=b$ as $a<b$.

Fig. 3.7: G

Case 3. $b>2 a$. Let G be a graph of order $b+2 a+3$ obtained by identifying the central vertex of the wheel $W_{b+3}=K_{1}+C_{b+2}$ and an end vertex of the path $P_{2 a+1}$, where $K_{1}: v_{1}, C_{b+2}: u_{1}, u_{2}, \ldots, u_{b+2}, u_{1}$ and $P_{2 \alpha+1}: v_{1}, v_{2}, \ldots, v_{2 \alpha+1}$. The resulting graph G is shown in Fig. 3.8.

Fig. 3.8: G
It is easy to verify that

$$
\begin{aligned}
& e_{m_{1}}\left(u_{i}\right)=b \text { for } 1 \leq i \leq b+2 \\
& e_{m_{1}}\left(v_{i}\right)= \begin{cases}2 a-i, & \text { if } 1 \leq i \leq a \\
i-1, & \text { if } a<i \leq 2 a+1\end{cases}
\end{aligned}
$$

It is easy to verify that there is no vertex x in G with $e_{m_{1}}(x)<a$ and there is no vertex y in G with $e_{m_{1}}(y)>b$. Thus $R_{m_{1}}=a$ and $D_{m_{1}}=b$ as $b>2 a$.

Now we have a realization theorem for the vertex-to-edge radius, vertex-toedge monophonic radius and vertex-to-edge detour radius of some connected graph.

Theorem 3.16. For any three positive integers $a_{s} b_{s} c$ with $3 \leq a \leq b \leq c$, there exists a connected graph G such that $r_{1}=a_{s} R_{m_{1}}=b$ and $R_{1}=c$.
Proof. Case 1. $a=b=c$. Let $P_{1}: u_{1}, u_{2}, \ldots, u_{a+1}$ and $P_{2}: v_{1}, v_{2}, \ldots, v_{a+1}$ be two paths of order $a+1$. We construct the graph G of order $2 a+2$ by joining u_{1} of P_{1} and v_{1} of P_{2} by an edge. It is easy to verify that $e_{1}\left(u_{i}\right)=e_{m_{1}}\left(u_{i}\right)=e_{D_{1}}\left(u_{i}\right)=a+i-1 \quad$ for $1 \leq i \leq a+1$. Also $e_{1}\left(v_{i}\right)=e_{m_{1}}\left(v_{i}\right)=e_{D_{1}}\left(v_{i}\right)=a+i-1$ for $1 \leq i \leq a+1$. It is easy to verify that there is no vertex x in G with $e_{1}(x)<a_{n} e_{m_{1}}(x)<b$ and $e_{D_{1}}(x)<c$. Thus $r_{1}=a_{3} R_{m_{1}}=b$ and $R_{1}=c$. as $a=b=c$.

Case 2. $3 \leq a \leq b<c$. Let $F_{1}: u_{1}, u_{2}, \ldots, u_{a+1} \quad$ and $F_{2}: v_{1}, v_{2}, \ldots, v_{a+1}$ be two paths of order $a+1$. Let $F_{3}: w_{1}, w_{2}, \ldots, w_{b-a+3}$ and $F_{4}: z_{1}, z_{2}, \ldots, z_{b-a+3}$ be two paths of order $b-a+3$. Let $F_{5}=K_{c-b+1}$ with $V\left(F_{5}\right)=\left\{x_{1}, x_{2}, \ldots, x_{c-b+1}\right\}$. We construct the graph G of order $c+b+3$ as follows: (i) identify the vertices u_{1} in F_{1}, w_{1} in F_{3} and x_{1} in F_{5}; also identify the vertices v_{1} in F_{2}, z_{1} in F_{4} and x_{c-b+1} in F_{5} (ii) identify the vertices u_{3} in F_{1} and w_{b-a+3} in F_{3}; also and identify the vertices z_{b-a+3} in F_{4} and v_{3} in F_{2}, (iii) join each vertex $w_{i}(2 \leq i \leq b-a+2)$ in F_{3} and u_{2} in F_{1} and join each vertex $z_{i}(2 \leq i \leq b-a+2)$ in F_{4} and v_{2} in F_{2}. The resulting graph G is shown in Fig. 3.9.

Fig. 3.9: G
It is easy to verify that

$$
\left.\left.\left.\begin{array}{l}
e_{1}\left(x_{i}\right)=a \text { for } 1 \leq i \leq c-b+1 \\
e_{1}\left(u_{i}\right)=a+i-1 \text { for } 1 \leq i \leq a+1 \\
e_{1}\left(v_{i}\right)=a+i-1 \text { for } 1 \leq i \leq a+1
\end{array} e_{e_{1}\left(w_{i}\right)= \begin{cases}a+i-1, & \text { if } 1 \leq i \leq 2 \\
a+2, & \text { if } 3 \leq i \leq b-a+3\end{cases} }^{e_{1}\left(z_{i}\right)= \begin{cases}a+i-1, & \text { if } 1 \leq i \leq 2 \\
a+2, & \text { if } 3 \leq i \leq b-a+3\end{cases} } \begin{array}{l}
e_{m_{1}}\left(x_{i}\right)=b \text { for } 1 \leq i \leq c-b+1
\end{array} e_{e_{m_{1}}\left(u_{i}\right)= \begin{cases}b+i-1, & \text { if } 1 \leq i \leq 2 \\
2 b-a+i-1, & \text { if } 3 \leq i \leq a+1\end{cases} }^{e_{m_{1}}\left(v_{i}\right)= \begin{cases}b+i-1, & \text { if } 1 \leq i \leq 2 \\
2 b-a+i-1, & \text { if } 3 \leq i \leq a+1\end{cases} } \begin{array}{l}
e_{m_{1}}\left(w_{i}\right)=b+i-1 \text { for } 1 \leq i \leq b-a+3
\end{array}\right\} \begin{array}{l}
e_{m_{1}}\left(z_{i}\right)=b+i-1 \text { for } 1 \leq i \leq b-a+3
\end{array}\right\} \begin{array}{ll}
c, & \text { if } i=1 \\
c+b-a+3, & \text { if } i=2 \\
c+b-a+i, & \text { if } 3 \leq i \leq a+1
\end{array}\right]
$$

$$
e_{D_{1}}\left(x_{i}\right)=c \text { for } 1 \leq i \leq c-b+1
$$

$$
e_{D_{1}}\left(v_{i}\right)= \begin{cases}c, & \text { if } i=1 \\ c+b-a+3, & \text { if } i=2 \\ c+b-a+i, & \text { if } 3 \leq i \leq a+1\end{cases}
$$

$$
e_{D_{1}}\left(w_{i}\right)= \begin{cases}c, & \text { if } i=1 \\ c+b-a+3, & \text { if } 2 \leq i \leq b-a+3\end{cases}
$$

$$
e_{D_{1}}\left(z_{i}\right)= \begin{cases}c, & \text { if } i=1 \\ c+b-a+3, & \text { if } 2 \leq i \leq b-a+3\end{cases}
$$

It is easy to verify that there is no vertex x in G with $e_{1}(x)<a_{,} e_{m_{1}}(x)<b$ and $e_{D_{1}}(x)<c$. Thus $r_{1}=a_{,} R_{m_{1}}=b$ and $R_{1}=c$ as $a \leq b<c$.

Case 3. $3 \leq a<b=c$. Let $E_{1}: v_{1}, v_{2}, \ldots, v_{2 a+3}$ be a path of order $2 a+3$. Let $E_{2}: u_{1}, u_{2}, \ldots, u_{b-a+3}$ and $E_{3}: w_{1}, w_{2}, \ldots, w_{b-a+3}$ be two paths of order $b-a+3$. Let $E_{i}: z_{i}(4 \leq i \leq 2(b-a)+3)$ be $2(b-a)$ copies of K_{1}. We construct the graph G of order $4 b-2 a+5$ as follows: (i) identify the vertices v_{a+2} in $E_{1} ; u_{1}$ in E_{2} and w_{1} in E_{3} (ii) identify the vertices v_{a} in E_{1} and u_{b-a+3} in E_{2} and identify the vertices v_{a+4} in E_{1} and w_{b-a+3} in E_{3} (iii) join each $E_{i}(4 \leq i \leq b-a+3)$ with v_{a+2} in E_{1} and w_{i-1} in E_{2} and join each $E_{i}(b-a+4 \leq i \leq 2(b-a)+3)$ with v_{a+2} in E_{1} and $u_{i-b+a-1}$ in E_{3}. The resulting graph G is shown in Fig. 3.10.

Fig. 3.10: G
It is easy to verify that

$$
\begin{aligned}
& e_{1}\left(v_{i}\right)= \begin{cases}2 a+2-i, & \text { if } 1 \leq i \leq a+1 \\
a, & \text { if } i=a+2 \\
i-2, & \text { if } a+3 \leq i \leq 2 a+3\end{cases} \\
& e_{1}\left(w_{i}\right)= \begin{cases}a, & \text { if } i=1 \\
a+1, & \text { if } i=2 \\
a+2, & \text { if } 3 \leq i \leq b-a+3\end{cases} \\
& e_{1}\left(u_{i}\right)= \begin{cases}a, & \text { if } i=1 \\
a+1, & \text { if } i=2 \\
a+2, & \text { if } 3 \leq i \leq b-a+3\end{cases} \\
& e_{1}\left(z_{i}\right)=a+1 \text { for } 4 \leq i \leq 2(b-a)+3
\end{aligned}
$$

$$
e_{m_{1}}\left(v_{i}\right)= \begin{cases}2 b+2-i, & \text { if } 1 \leq i \leq a \\ b+1, & \text { if } i=a+1, a+3 \\ b, & \text { if } i=a+2 \\ 2(b-a)-2+i, & \text { if } a+4 \leq i \leq 2 a+3\end{cases}
$$

$$
e_{m_{1}}\left(w_{i}\right)= \begin{cases}b+i-1, & \text { if } i=1,2 \\ 2 b-a+5-i, & \text { if } 3 \leq i \leq\left\lfloor\frac{b-a+5}{2}\right\rfloor \\ b+i-1, & \text { if }\left\lfloor\frac{b-a+5}{2}\right\rfloor<i \leq b-a+3\end{cases}
$$

$$
e_{m_{1}}\left(u_{i}\right)= \begin{cases}b+i-1, & \text { if } i=1,2 \\ 2 b-a+5-i, & \text { if } 3 \leq i \leq\left\lfloor\frac{b-a+5}{2}\right\rfloor\end{cases}
$$

$$
\left(b+i-1, \quad \text { if } \quad\left\lfloor\frac{\overline{b-a+5}}{2}\right\rfloor<i \leq b-a+3\right.
$$

$$
e_{m_{1}}\left(z_{i}\right)=b+1 \text { for } 4 \leq i \leq 2(b-a)+3
$$

$$
e_{D_{1}}\left(v_{i}\right)= \begin{cases}2 b+2-i, & \text { if } 1 \leq i \leq a \\ 2 b-a+3, & \text { if } i=a+1, a+3 \\ b, & \text { if } i=a+2 \\ 2(b-a)-2+i, & \text { if } a+4 \leq i \leq 2 a+3\end{cases}
$$

$$
e_{D_{1}}\left(w_{i}\right)= \begin{cases}b, & \text { if } i=1 \\ 2 b-a+5-i, & \text { if } 2 \leq i \leq\left\lfloor\frac{b-a+5}{2}\right\rfloor \\ b+i-1, & \text { if }\left\lfloor\frac{b-a+5}{2}\right\rfloor<i \leq b-a+3\end{cases}
$$

$e_{D_{1}}\left(u_{i}\right)= \begin{cases}b, & \text { if } i=1 \\ 2 b-a+5-i, & \text { if } 2 \leq i \leq\left\lfloor\frac{b-a+5}{2}\right\rfloor \\ b+i-1, & \text { if }\left\lfloor\frac{b-a+5}{2}\right\rfloor<i \leq b-a+3\end{cases}$
$e_{D_{1}}\left(z_{i}\right)= \begin{cases}e_{D_{1}}\left(w_{i-2}\right), & \text { if } 4 \leq i \leq\left\lfloor\frac{b-a+7}{2}\right\rfloor \\ e_{D_{1}}\left(w_{i}\right), & \text { if }\left\lfloor\frac{b-a+7}{2}\right\rfloor<i \leq b-a+3 \\ e_{D_{1}}\left(u_{i-b+a-2}\right), & \text { if } 4 \leq i \leq\left\lfloor\frac{b-a+7}{2}\right\rfloor \\ e_{D_{1}}\left(u_{i-b+a}\right), & \text { if }\left\lfloor\frac{b-a+7}{2}\right\rfloor<i \leq b-a+3\end{cases}$
It is easy to verify that there is no vertex x in G with $e_{1}(x)<a_{n} e_{m_{1}}(x)<b$ and $e_{D_{1}}(x)<c$. Thus $r_{1}=a_{s} R_{m_{1}}=b$ and $R_{1}=c$ as $a<b=c$.

Now we have a realization theorem for the vertex-to-edge diameter, the vertex-to-edge monophonic diameter and the vertex-to-edge detour diameter of some connected graph.

Theorem 3.17. For any three positive integers a, b and c with $4 \leq a \leq b \leq c$, there exists a connected graph G such that $d_{1}=a_{3} D_{m_{1}}=b$ and $D_{1}=c$.
Proof. Case 1. $a=b=c$. Let $G=P_{a+2}: u_{1}, u_{2, \ldots,}, u_{a+2}$ be a path of order $a+2$. Then

$$
e_{1}\left(u_{i}\right)=e_{m_{1}}\left(u_{i}\right)=e_{D_{1}}\left(u_{i}\right)= \begin{cases}a+1-i, & \text { if } 1 \leq i \leq\left\lfloor\frac{a+2}{2}\right\rfloor \\ i-2, & \text { if }\left\lfloor\frac{a+2}{2}\right\rfloor<i \leq a+2\end{cases}
$$

It is easy to verify that there is no vertex x in G with $e_{1}(x)>a_{y} e_{m_{1}}(x)>b$ and $e_{D_{1}}(x)>c$. Thus $d_{1}=a_{v} D_{m_{1}}=b$ and $D_{1}=c$ as $a=b=c$.
Case $2.4 \leq a \leq b<c$. Let $F_{1}: u_{1}, u_{2, \ldots,}, u_{a+1}$ be a path of order $a+1$. Let $F_{2}: w_{1,}, w_{2, \ldots, y} w_{b-a+3}$ be a path of order $b-a+3$. Let
$F_{3}: x_{1}, x_{2}, \ldots, x_{c-b+1}$ be a complete graph of order $c-b+1$. We construct the graph G of order $c+2$ as follows: (i) identify the vertices u_{1} in $F_{1} ; w_{1}$ in F_{2} and x_{1} in F_{3} and identify the vertices u_{3} in F_{1} and w_{b-a+3} in F_{2}, (ii) join each vertex $w_{i}(2 \leq i \leq b-a+2)$ in F_{2} and u_{2} in F_{1}. The resulting graph G is shown in Fig. 3.11.

Fig. 3.11: G
It is easy to verify that
$e_{1}\left(x_{i}\right)= \begin{cases}a-1, & \text { if } i=1 \\ a, & \text { if } 2 \leq i \leq c-b+1\end{cases}$
$e_{1}\left(u_{i}\right)= \begin{cases}a-i, & \text { if } 1 \leq i \leq\left\lfloor\frac{a+1}{2}\right\rfloor \\ i-1, & \text { if }\left\lfloor\frac{a+1}{2}\right\rfloor<i \leq a+1\end{cases}$
$e_{1}\left(w_{i}\right)= \begin{cases}a-1, & \text { if } 1 \leq i \leq b-a+1 \\ a-2, & \text { if } i=b-a+2 \\ a-3, & \text { if } i=b-a+3 \text { for } a-3 \geq 2 \\ 2, & \text { if } i=b-a+3 \text { for } a-3 \leq 2\end{cases}$

$$
\begin{aligned}
& e_{m_{1}}\left(u_{i}\right)= \begin{cases}b-1, & \text { if } i=1 \\
a-2, & \text { if } i=2 \\
b-a+i-1, & \text { if } 3 \leq i \leq a+1 \text { for } b-a+i-1 \geq a-i \\
a-i, & \text { if } 3 \leq i \leq a+1 \text { for } b-a+i-1 \leq a-i\end{cases} \\
& e_{m_{1}}\left(x_{i}\right)= \begin{cases}b-1, & \text { if } i=1 \\
b, & \text { if } 2 \leq i \leq c-b+1\end{cases} \\
& e_{m_{1}}\left(w_{i}\right)= \begin{cases}b-i, & \text { if } 1 \leq i \leq\left\lfloor\frac{b}{2}\right\rfloor \text { for }\left\lfloor\frac{b}{2}\right\rfloor<b-a+3 \\
i-1, & \text { if }\left\lfloor\frac{b}{2}\right\rfloor<i \leq b-a+3 \text { for }\left\lfloor\frac{b}{2}\right\rfloor<b-a+3 \\
b-i, & \text { if } 1 \leq i \leq b-a+3 \text { for }\left\lfloor\frac{b}{2}\right\rfloor>b-a+3\end{cases} \\
& e_{D_{1}}\left(x_{i}\right)= \begin{cases}b, & \text { if } i=1 \\
c, & \text { if } 2 \leq i \leq c-b+1\end{cases} \\
& e_{D_{1}}\left(u_{i}\right)= \begin{cases}b, & \text { if } i=1,2 \\
b-a+i, & \text { if } 3 \leq i \leq a+1 \text { for } b-a+i \geq a-i \\
a-i, & \text { if } 3 \leq i \leq a+1 \text { for } b-a+i \leq a-i\end{cases} \\
& e_{D_{1}}\left(w_{i}\right)= \begin{cases}b, & \text { if } 1 \leq i \leq b-a+2 \\
b-a+3, & \text { if } i=b-a+3 \text { for } b-a+3 \geq a-3 \\
a-3, & \text { if } i=b-a+3 \text { for } b-a+3 \leq a-3\end{cases}
\end{aligned}
$$

It is easy to verify that there is no vertex x in G with $e_{1}(x)>a_{,} e_{m_{1}}(x)>b$ and $e_{D_{1}}(x)>c$. Thus $d_{1}=a_{s} D_{m_{1}}=b$ and $D_{1}=c$ as $a \leq b<c$.
Case 3. $4 \leq a<b=c$. Let $E_{1}: v_{1}, v_{2}, \ldots, v_{a+2}$ be a path of order $a+2$. Let $E_{2}: w_{1}, w_{2}, \ldots, w_{b-a+3}$ be a path of order $b-a+3$. Let $E_{i}: z_{i}(3 \leq i \leq b-a+2)$ be $b-a_{\text {copies of }} K_{1}$. We construct the graph G of order $2 b-a+3$ as follows: (i) identifying the vertices v_{a-1} and v_{a+1} of E_{1} with w_{1} and w_{b-a+3} of E_{2} respectively and joining each $z_{i}(3 \leq i \leq b-a+2)$ with v_{a-1} in E_{1} and w_{i} in E_{2}. The resulting graph G is shown in Fig. 3.12.

Fig. 3.12: G
It is easy to verify that

$$
\begin{aligned}
& e_{1}\left(v_{i}\right)= \begin{cases}a+1-i, & \text { if } 1 \leq i \leq\left\lfloor\frac{a+2}{2}\right\rfloor \\
i-2, & \text { if }\left\lfloor\frac{a+2}{2}\right\rfloor<i \leq a+2\end{cases} \\
& e_{m_{1}}\left(v_{i}\right)= \begin{cases}b+1-i, & \text { if } 1 \leq i \leq a-1 \\
b-1, & \text { if } i=a+1 \\
b-a+2, & \text { if } i=a \text { for } b-a+2 \geq a-2 \\
a-2, & \text { if } i=a \text { for } b-a+2<a-2 \\
b, & \text { if } i=a+2\end{cases} \\
& e_{D_{1}}\left(v_{i}\right)= \begin{cases}b+1-i, & \text { if } 1 \leq i \leq a-1 \\
b-1, & \text { if } i=a+1 \\
b, & \text { if } i=a, a+2\end{cases} \\
& e_{1}\left(w_{i}\right)= \begin{cases}e_{1}\left(v_{a-1}\right), & \text { if } i=1 \\
2, & \text { if } i=2 \text { for } a=4 \text { and } b-a=1 \\
3, & \text { if } i=2 \text { for } a=4 \text { and } b-a>1 \\
a-2, & \text { if } i=2 \text { for } a>4 \text { and } b-a>1 \\
a-1, & \text { if } 3 \leq i \leq b-a+3\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
m_{1}\left(w_{i}\right)= & \begin{cases}e_{m_{1}}\left(v_{a-1}\right), & \text { if } i=1 \\
b-a+2, & \text { if } i=2 \text { for } b-a+2 \geq a-2 \\
a-2, & \text { if } i=2 \text { for } b-a+2<a-2 \\
b+2-i, & \text { if } 3 \leq i \leq\left\lceil\frac{b-a+5}{2}\right\rceil \\
a-4+i, & \text { if }\left\lceil\frac{b-a+5}{2}\right\rceil<i \leq b-a+3\end{cases} \\
& \text { if } i=1
\end{aligned} \\
& e_{D_{1}}\left(w_{i}\right)= \begin{cases}e_{D_{1}}\left(v_{a-1}\right), & \text { if } i=1 \\
b+2-i, & \text { if } 2 \leq i \leq\left\lceil\frac{b-a+5}{2}\right\rceil \\
a-4+i, & \text { if }\left\lceil\frac{b-a+5}{2}\right\rceil<i \leq b-a+3\end{cases} \\
& e_{1}\left(z_{i}\right)=e_{1}\left(\dot{w}_{2}\right) \text { if } 3 \leq i \leq b-a+2 \\
& e_{m_{1}}\left(z_{i}\right)= \begin{cases}b-a+5-i, & \text { if } 3 \leq i \leq b-a+2 \text { for } b-a+5-i \geq i-1 \\
i-1, & \text { if } 3 \leq i \leq b-a+2 \text { for } b-a+5-i<i-1\end{cases} \\
& e_{D_{1}}\left(z_{i}\right)=e_{D_{1}}\left(w_{i}\right)+1 \text { if } 3 \leq i \leq b-a+2
\end{aligned}
$$

It is easy to verify that there is no vertex x in G with $e_{1}(x)>a_{y} e_{m_{1}}(x)>b$ and $e_{D_{1}}(x)>c$. Thus $d_{1}=a_{n} D_{m_{1}}=b$ and $D_{1}=c$ as $a<b=c$.

Theorem 3.18. The vertex-to-edge monophonic center of every connected graph G lies in a single block of G.
Proof. Suppose that the vertex-to-edge monophonic center of a connected graph G lies in more than one block. Then G contains a cut vertex v such that $G-v$ has two components G_{1} and G_{2}, each of which contains a vertex-to-edge monophonic central vertices of G. Let C be a vertex-to-edge monophonic eccentric edge of v and let P be a longest vertex-to-edge monophonic path in G. At least one of G_{1} and G_{2} contains no vertices of P, say G_{2} contains no vertex of P. Let W be a vertex-to-edge monophonic central vertex in G that belongs to G_{2} and let Q be a longest $w-v$ monophonic path in G. Since v is a cut vertex, P followed by Q produces a
longest $w-e$ monophonic path, whose length is greater than that of P. Hence

$$
e_{m_{1}}(w) \geq d_{m}(w, v)+d_{m}(v, e)=d_{m}(w, v)+e_{m_{1}}(v)>e_{m_{1}}(v)
$$

Thus $e_{m_{1}}(w)>e_{m_{1}}(v)$. So that w is not a vertex-to-edge monophonic central vertex in G, which is contradiction. Hence $C_{m_{1}}(G)$ lies within a block of G.

Corollary 3.19. The vertex-to-edge monophonic center of every tree is isomorphic to either K_{1} or K_{2}.
Proof. Every edges of a tree is a block. So that the vertex-to-edge monophonic center of every tree is either a vertex or the adjacent vertices.

Now we leave the following problems as open.

Problem 3.20. Does there exists a connected graph G such that $e_{1}(v) \neq e_{m_{1}}(v) \neq e_{D_{1}}(v)$ for every vertex v in $G ?$

Problem 3.21. Is every graph a vertex-to-edge monophonic center of some connected graph?

Problem 3.22. Is every graph a vertex-to-edge monophonic periphery of some connected graph?

Problem 3.23. Characterize the vertex-to-edge monophonic self-centered graphs.

References:

[1] G. Chartrand and H. Escuadro, and P. Zhang: Detour Distance in Graphs, J.Combin.Math.Combin.Comput., 53 (2005), 75-94.
[2] G. Chartrand and P. Zhang: Introduction to Graph Theory, McGraw-Hill, New Delhi, 2006.
[3] S. L. Hakimi, Optimum location of switching centers and absolute centers and medians of a graph, Operations Research, 12 (1964).
[4] I. Keerthi Asir and S. Athisayanathan: Vertex-to-Edge Detour Distance in Graphs, Scientia Acta Xaveriana (Accepted).
[5] P. A. Ostrand: Graphs with specified radius and diameter, Discrete Math. Algorithms Appl. 3 (2011), 159-169.
[6] A. P. Santhakumaran: Center of a graph with respect to edges, SCIENTIA series A: Mathematical Sciences, 19 (2010), 13-23 .
[7] A. P. Santhakumaran and P. Titus: Monophonic Distance in Graphs, Discrete Math. Algorithms Appl., 3(2011), 159-169.

